Мощный импульс развитию электродуговых генераторов горячего газа дала ракетная техника. Для наземной имитации условий полета ракеты в атмосфере необходимо было получить сверхзвуковые струи воздуха, нагретого до высокой температуры. Эта задача была решена с помощью электродуговых устройств, получивших название плазмотронов.

Создание работоспособных плазмотронов потребовало проведения широких научных исследований в области высоко температурной газодинамики и электрофизики,  изучения рабочего процесса  в плазмотроне, в частности взаимодействия электрической дуги с газовым потоком, поиска новых конструктивных схем и технических решений. Пройдя период становления  и развития,  плазмотроностроение  превратилось в отдельную область техники. Плазмотроны находят все более широкое применение  в плазмометаллрургии и плазмохимии, плазменной технологии обработки материалов  и нанесения покрытий, в технике получения мелкодисперсных порошков и тд..

Нагрев газа в плазмотроне происходит в результате его взаимодействия с дугой, поэтому эффективность нагрева существенно зависит от того, каким образом организованно это взаимодействие, т.е. рабочий поцесс.

Оптимальный рабочий процесс должен удовлетворять двум требованиям.
Во-первых, очевидно, что для получения максимальной средне массовой температуры большая часть нагреваемого газа должна взаимодействовать с дуговым разрядом.
Во-вторых, необходимо обеспечить такие тепловые режимы всех узлов плазмотрона, при которых ресурс его работы был бы достаточно велик. Для плазмотронов большой мощности это требование сводится, в первую очередь, к обеспечению стойкости электродов.

 

Для повышения температуры и мощности обычной дуги и превращения ее в плазменную используются два процесса: сжатие дуги и принудительное вдувание в нее плазмообразующего газа. Сжатие дуги осуществляется за счет размещения ее в специальном устройстве – плазмотроне, стенки которого интенсивно охлаждаются водой. В результате сжатия уменьшается поперечное сечение дуги и возрастает ее мощность – количество энергии, приходящееся на единицу площади. Температура в столбе обычной дуги, горящей в среде аргона, и паров железа составляет 5000–7000°С. Температура в плазменной дуге достигает 30 000°С.

Одновременно со сжатием в зону плазменной дуги вдувается плазмообразующий газ, который нагревается дугой, ионизируется и в результате теплового расширения увеличивается в объеме в 50–100 раз. Это заставляет газ истекать из канала сопла плазмотрона с высокой скоростью. Кинетическая энергия движущихся ионизированных частиц плазмообразующего газа дополняет тепловую энергию, выделяющуюся в дуге в результате происходящих электрических процессов. Поэтому плазменная дуга является более мощным источником энергии, чем обычная.

Основными чертами, отличающими плазменную дугу от обычной, являются:

  • более высокая температура;
  • меньший диаметр дуги;
  • цилиндрическая форма дуги (в отличие от обычной конической);
  • давление дуги на металл в 6–10 раз выше, чем у обычной;
  • возможность поддерживать дугу на малых токах (0,2–30 А).

Comments are closed.